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Introduction
In scientific publications, a clear report of an appropriate
statistical analysis allows independent assessment of the
results and adds weight to the conclusions. Poorly described
statistical analyses of field experiments give little justification
for the conclusions drawn. However, to gain maximum
benefit, statistical analysis should always be considered at the
planning stage of the experiment, in the choice of treatments
applied and the experimental design. Good choices at this
stage can enable a suitable statistical analysis and reduce
uncertainty in treatment estimates. This paper gives
guidelines on the issues that should be considered at the
design and analysis stages to facilitate good experimentation
and reporting. These are principles and guidelines rather
than rules, as the best choices for any particular experiment
will depend on the context and aims of the experiment.
Further general information on the design and analysis of
field crop experiments aimed at practitioners can be found in
Steel & Torrie (1990), Mead, Curnow & Hasted (1993) or
Snedecor & Cochran (1989). However, these texts may be
less helpful to scientists unused to mathematical notation. A
better solution may be an early approach for advice to a
statistical consultant with experience in the design and
analysis of agricultural field plot experiments.

Choice of treatments
The treatments to be applied to field experiments must be
chosen to specifically address the aims of the experiment. In
the simplest case, one treatment factor (e.g. cultivar or
herbicide regime) may be tested at each of several levels.
Treatment factor levels may be qualitative, e.g. different
cultivars, or quantitative with an underlying numeric value,
e.g. rate of application of pesticide or fertiliser. All other
factors that may affect the results should be held constant (or
as constant as possible) across the experiment. Alternatively,
two or more factors may be simultaneously tested with all
combinations of the levels of the different factors present in
the trial - such an experiment is said to have a factorial
treatment structure. The general advantage of a factorial
structure is that, because all combinations are present, it
gives an interpretable test for overall differences within each

of the main effects and also for their interaction. The main
effect of a factor comprises an overall comparison between
the levels of that factor averaged over all levels of the other
factors applied. An interaction occurs if the response across
levels of one factor differs according to the levels of other
factors applied. Interactions can often be most clearly seen as
non-parallel lines in graphical plots, demonstrated for a 2 ✕

2 factorial structure (two treatments, each with two levels) in
Figure 1.

To illustrate these concepts, consider a factorial
experiment done at Rothamsted in the 1997/98 growing
season to study the effect of fungicide regime on development
of light leaf spot disease on winter oilseed rape cultivars
(Steed et al., 1999). Ten different fungicide timings were
used, including two control treatments: a negative control
(no fungicide applied) to give a severe epidemic, and a
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Figure 1. Possible responses to treatments in a field
experiment with a 2 ✕ 2 factorial treatment structure
consisting of two fungicide timings (early or late) for two
cultivars (A or B): no interaction between treatment factors
(a) or significant interactions (b,c).



positive control (routine monthly fungicide application
October-March) to give maximum disease control possible
with the fungicide. The two cultivars used were Capitol
(resistant to light leaf spot) and Bristol (susceptible). There
were thus two treatment factors: fungicide regime (ten levels)
and cultivar (two levels), and all 20 combinations of the two
factors were used. It was hence possible to test both the main
effects of fungicide regime and cultivar, and also their
interaction, i.e. whether the effect of fungicide regime differs
between cultivars.

In some cases, the simple factorial structure cannot
always be applied, for example, if some treatment
combinations are not scientifically valid or physically
possible. In this case, the treatment structure should be
designed so that specific contrasts, i.e. treatment
comparisons, can be used to examine questions of interest.

Choice of design
Once a set of treatment factors and an experimental location
has been chosen, then the experimental design can be
constructed. The three crucial elements of experimental
design are replication, randomization and blocking. In
practice, the experimental design also needs to consider the
scale at which experimental treatments can be applied, the
homogeneity of the field, whether treatment levels applied to
neighbouring plots may interfere with each other, and the
replication required for each treatment combination.

The scale at which the different levels of each treatment
factor can be applied will determine the size of the
experimental unit. This may differ between treatments: for
example, different cultivars may be sown in small plots, but
machinery constraints may mean that fungicide can be
applied only to larger areas. The experimental unit for each
treatment factor is defined as the smallest unit of
experimental material to which different levels are applied. In
our example (Steed et al., 1999), the experimental unit for a
cultivar is a small plot, and the experimental unit for
fungicide regime is a set of two small plots. Replication for
each treatment is then the number of experimental units to
which each level is applied. The structure of the experimental
units for each treatment must be reflected in the statistical
analysis (see Table 1 later).

Given the sets of experimental units, levels of each
treatment factor must be assigned at random to each unit to
give a valid experimental design. The simplest design is the

completely randomized design, where the experimental unit
for all treatments is the same (a plot), and treatment
combinations are randomly allocated to plots. This design is
rarely used for field experiments, however, as there is usually
background heterogeneity within the experiment. A more
efficient type of design involves grouping, or blocking, units
that are expected to be reasonably homogenous, i.e. expected
to give similar results under the same treatment. Blocking can
account for variation between different areas of the field that
would otherwise inflate the estimate of residual error (i.e. the
between-unit or background variability, the portion of total
variability unaccounted for by the treatments applied). Blocks
may reflect field characteristics, e.g. differences in pH,
drainage or soil-born disease, or fertility trends, or can be used
to guard against the impact of outside factors, e.g. the spread
of pests or diseases into the experiment from one (or two)
edges of the field. It follows that the choice of blocks and block
sizes should be independent of the choice of treatments. In
practice a compromise is usually made: the optimal block size
is not usually known, so a reasonable block size is chosen so
that a standard design can be used. Introduction of blocking
into the design means that variation may be considered within
each different level of blocking, or stratum, of the design.

Randomized complete block designs, with each
combination of treatments appearing once in each block, are
often used for field experiments as this is the simplest design
that allows for some blocking. Latin square designs are used
where gradients may exist in two perpendicular directions
across a field. Split-plot designs are appropriate where
different treatments require experimental units of different
sizes. The field layout for the split-plot winter oilseed rape
experiment with 10 fungicide regimes and 2 cultivars (Steed et
al., 1999) is shown in Figure 2. This design has three
replicates of each treatment combination, with different
fungicide regimes applied to whole plots, and the two
cultivars grown on sub-plots within each whole plot.
Randomized layouts for these standard designs can be
generated by most statistical packages. In each of these cases,
these may not be the optimal designs if there is a large number
of treatment combinations (so that block sizes become very
large) or if the background is very heterogeneous. In these
cases, incomplete block designs or general row-column
designs that use small blocks, with only a subset of treatments
within each block, may be more efficient (Cochran & Cox,
1957, Mead, 1988, or Whitaker et al., 2002, give more
details). With all designs, randomization is essential to ensure
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Figure 2: Field layout of an experiment with a split-plot design to examine effects of 10 fungicide regimes [untreated control (-),
October (O), October + March (OS), November (N), November + March (NS), December (D), December + March (DS), March
+ April (SF),April (FF), routine monthly October-March control (R)] on development of light leaf spot disease on winter oilseed
rape cultivars Bristol (B) or Capitol (C) (Steed et al., 1999).
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that treatment estimates are unbiased. A non-standard design
may also be considered if neighbouring treatment
combinations are expected to interfere with one another, for
example, application of an effective fungicide may reduce
disease inoculum received by neighbouring plots. Guard rows
between plots are often sufficient to reduce these effects, but
in extreme cases a restricted randomization may be used so
that treatment combinations are allowed as neighbours only
where interference is not expected (David & Kempton, 1996)
or so that all neighbour combinations occur equally and
balance out the interference effects (neighbour-balanced
designs, e.g. Bailey, 1984).

The advantage of standard designs is that they naturally
lead to a straightforward analysis. However, analyses for
non-standard designs are now widely available (Piepho et al,
2003). The chosen balance between the safety net of a
familiar analysis and potential gains in the efficiency in
estimation of treatment differences may depend on the
statistical knowledge and skill within the experimental team.
Again, the inclusion of a statistical consultant within the
team will help to ensure that an appropriate choice is made.

In all cases, a dummy analysis should be carried out on
the proposed design to confirm that all treatment effects or
contrasts of interest are estimable, and that they are
estimated with reasonable relative precision. The dummy
analysis should also confirm that sufficient residual degrees
of freedom (generally recommended to be 12-20) are present
(in the relevant strata, see Table 1) to allow the background
variability to be estimated with some confidence. Where
information on background variability is available from
previous experiments, a preliminary analysis (a power study)
can be done to determine the power of the design to detect a
specified size of treatment difference. This can help to avoid
the waste of time, effort and expense involved in doing an
under-replicated experiment that cannot detect treatment
differences of the size required, or an over-replicated
experiment which gains no useful information for the extra
resources used. For an under-replicated experiment, it may be
better to decrease the number of treatment factors (or levels)
tested in order to increase replication of the remainder.

Analysis
Subject to the checks described below, for standard designs
the statistical analysis proceeds via the multi-stratum analysis
of variance (ANOVA). The ANOVA table for the logit-
transformed response variable %stem area affected by
disease from the split-plot experiment shown in Figure 2 is
given in Table 1. This analysis preserves the blocking
structure of the experiment so that treatment terms (main
effects or interactions) are assessed with respect to the
appropriate estimate of background variation, provided by
the residual mean squares. For each treatment term, the ratio
of variation amongst treatments to the appropriate
background variation indicates whether treatment
differences could have occurred by chance, or if there is
evidence that real treatment differences exist. This stratified
analysis of variance is provided as default by the GenStat
statistical system (Payne, 2003, Chapter 4) but has to be
explicitly constructed in other packages. For non-standard
unbalanced designs, the design can be expressed as a mixed
model, with the blocking structure used as the random
model, and the analysis done using the restricted maximum
likelihood (REML) method (Piepho et al., 2003) available in
many standard statistical packages. In either case, any non-
treatment factors that were not adequately controlled and
subsequently found to vary across the experiment, and which
might influence the results, can be included as covariates in
the analysis.

Analysis of variance assumes that the data can be
represented in terms of the block and treatment structures as
an additive linear model, i.e. that each component of the
structure adds (or subtracts) a consistent amount to the total
response. For example, for a randomized complete block
design with one treatment factor, the underlying model can
be written as

yij = m + bi + tj + eij

i.e. the response yij for treatment j in block i can be
represented as a sum of effects: the overall mean (m), the
effect of the ith block (bi), the effect of the jth level of the
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Table 1: Analysis of variance table for analysis of light leaf spot severity data [logit (% stem area affected)] from a field
experiment with a split-plot design with 10 fungicide regimes (applied to whole plots) and two winter oilseed rape cultivars
(applied to sub-plots) (Steed et al., 1999).All numbers rounded to 2 decimal places after calculation.

Source of variation Degrees of Sums of Mean square Variance F-probability 
freedom (d.f.) squares (s.s.) (m.s.)          ratio (v.r.) (p)

Block stratum 2 1.53 0.77 3.39

Block.Whole-plot stratum
Fungicide 9 14.48 1.61 7.13 <.001
Residual 18 4.06 0.23 1.41

Block.Whole-plot.Sub-plot stratum
Cultivar 1 21.70 21.70 135.50 <.001
Cultivar.Fungicide 9 1.82 0.20 1.26 0.314
Residual 20 3.20 0.16

Total 59 46.80



treatment (tj) and the residual error (eij). If this model is
implausible, then analysis of variance may not be helpful in
interpreting the data. A special case occurs when the effects
act multiplicatively rather than additively, then a logarithmic
transform of the data may be expected to respond on an
additive scale.

Analysis of variance also assumes that the errors on the
response variable are independent, Normally distributed
and have equal variances. These assumptions can be
checked by considering properties of the data and by
examining properties of the residuals from the analysis, as
these are the best available estimates of the errors. Formal
tests, such as Bartlett’s test for equality of variances
between treatment combinations, are available but
graphical examination of the residuals is a useful
preliminary step in detecting potential departures from the
assumptions. A plot of residuals against fitted values will
show any trend left in the residuals (which indicates the
model may be inadequate) and whether the residual
variance (indicated by spread about zero) is constant across
the range of fitted values (to meet the assumption of equal
variances). Differences in behaviour amongst treatment
combinations may be detected if the points are
distinguished accordingly using different colours or
symbols. Where the residuals are compatible with a Normal
distribution, then a plot of the ordered residuals against
quantiles of the standard Normal distribution (usually
called a Normal or Q-Q plot) should show an
approximately straight line and a histogram of the residuals
should have a symmetrical, bell-shaped distribution.
However, for small data sets even genuine samples from the
Normal distribution may show quite large deviations from
the ideal shapes and patterns. Independence of the residuals
may be investigated by plotting them according to the field
layout: no pattern should be discernable. This assumption
is commonly violated for repeated measurements, where
several successive samples are taken as a time-course from
each plot. Such measurements from the same plot may
show unequal correlation across time, and the analysis
should take account of this (Diggle et al, 1994).

The assumption that the errors are Normally distributed
implies that the data are measured on a continuous scale, or
on a close-to-continuous scale, without limits. Count data
(y≥0) and percentage data (0≤p≤100) are obvious
exceptions. For count data, variance often increases as the
mean increases. In this case, a log-transformation (z=log(y),
or z=log(y+1) if zero counts are present) maps onto an
unlimited scale and may give an approximately equal
variance over the range of the data. However, this
transformation may be inadequate if there are many zero
counts.

Percentage data are often calculated from the incidence
(x) within a sample of size n from each plot as p=100x/n.
Use of the logit transformation (z=log(x/(n-x)), or
z=log((x+1)/(n+1-x)) if incidences of 0 or n are present) may
be appropriate for such data. Where data are measured
directly as a percentage, e.g. disease severity as percentage
leaf area affected, then a nominal value of n=100 can be
used in the transformation. A logit transformation (with

n=100) was used on data for % oilseed rape stem area
affected by light leaf spot before analysis (Table 1), and a
set of residual plots is shown in Figure 3. These plots are
reasonable given the sample size: although there is a
possible trend in the plot of residuals against fitted values,
no other variable was related to this trend and the variance
was reasonably constant over the range of fitted values. The
logit transformation may be inadequate if there are many
values at the limits of the percentage scale (0 or 100) or
where the percentages have been calculated as incidence
from a small sample, e.g. the number of affected plants out
of a sample of only ten plants per plot. Larger samples are
therefore preferred for measurement of incidence. For
either count or incidence data, if the transformation is
unsuccessful in generating data that is suitable for analysis
of variance, then a generalized linear model (GLM) with an
appropriate error distribution (e.g. Poisson distribution for
counts or binomial distribution for proportions) should be
used (e.g. Payne, 2003, Chapter 3), with care taken to
incorporate the blocking structure of the experiment.
Scores that summarise an underlying scale should generally
be avoided, and the underlying scale should be used
explicitly wherever possible. Scores often do not
correspond to a linear scale, so that an “average score” is
not interpretable, and in this case the analysis of variance
model given above is usually inappropriate.

178 Outlooks on Pest  Management – August  2006

ANALYSIS OF COMPARATIVE FIELD EXPERIMENTS

Figure 3: Residual plots for logit (% winter oilseed rape stem
area affected with light leaf spot) from split-plot experiment
(Steed et al., 1999) analysed in Table 1, used to check
assumptions of analysis of variance: (a) histogram of residuals
should show symmetric distribution; (b) plot of residuals
against fitted values should show no trend and constant
variation about zero; (c,d) Normal and half-Normal plot of
ordered residuals or absolute value of residuals against the
expected Normal quantiles should show approximately
straight lines.
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Interpretation and presentation of results 
The analysis of variable table (e.g. Table 1) is used to
produce an F–statistic for each treatment term (the ratio of
the variation due to the treatment term relative to the
appropriate residual variation). An F-statistic is used to test
the null hypothesis that all treatment effects within the term
are equal (i.e. zero) against the alternative hypothesis of
differences amongst treatment effects. The F-statistics can
therefore be used to screen treatment main effects and
interactions to detect terms where differences exist. Under
the null hypothesis (no differences within the term) the
statistic is distributed as an F-distribution with two
component degrees of freedom: the first equal to the
degrees of freedom of the treatment term and the second
equal to the residual degrees of freedom of the stratum
where the term is estimated. If the F-statistic is so large that
a value of that size is unlikely to occur if the null hypothesis
is true, this is taken as evidence against the null hypothesis.
The p-value for the test is the probability of an F-statistic of
that size (or larger) occurring if the null hypothesis is true.
In analysis of data from an experiment with a factorial
treatment structure, the highest-order interactions (e.g.
cultivar ✕ fungicide in Table 1) should be examined first. If
these are significant (the threshold usually being taken as
p≤0.05), then the model cannot be simplified further
because the behaviour of one treatment factor changes
depending on the levels of another. If these interactions are
not significant, then lower-order interactions (and finally
main effects) can be examined. This iterative procedure is
followed until the model cannot be simplified further. The
analysis in Table 1 indicates no evidence of interaction
between cultivar and fungicide regime (p=0.314), but
strong evidence of differences amongst cultivars and
amongst fungicide regimes (p<0.001).

The aim is then to estimate (quantify) the effect of
different treatment factors. Tables of means should be
produced for the significant terms: for each treatment
factor a table should be produced for the highest-order
significant interaction that includes that factor. Tables of
main effects should therefore be examined only if a factor
shows no interaction with all other factors: if an interaction
is present, then the main effect table does not produce
meaningful predictions. Tables of means should be
produced with standard errors of differences (SEDs) or least
significant differences (LSDs) that can be used to evaluate
specific differences of interest. In both cases, the degrees of
freedom (d.f.) associated with the SED or LSD should be
specified: this is the residual d.f. from the stratum in which
the treatment mean was estimated. However, the
computation of many pair-wise comparisons should be
avoided, see below. Pre-defined contrasts of interest can be
incorporated into the analysis of variance by partitioning
the total sum of squares and treatment degrees of freedom
appropriately. For treatment factors with an underlying
numerical scale (e.g. fungicide dose) the form of the
response across the numeric scale can be examined
graphically by plotting treatment means (y-axis) against the
numeric scale (x-axis), or quantified using polynomial
contrasts. For transformed data, it must be remembered

that the SED applies on the transformed scale and cannot
be back-transformed. However, confidence intervals (CIs)
for treatment means or differences on the transformed scale
can be back-transformed for presentation on the scale of
the original data.

At this point in the analysis, multiple comparison tests
(e.g. Duncan’s multiple range test) are often used to
examine all factor level combinations in the table of
predicted means. Much has been written on the limitations
of the various multiple-comparison tests in the context of
entomology (Perry, 1986; Bondari, 1999), plant pathology
(Madden, 1982; Gilligan, 1986), weed research (Cousens,
1988) or general agricultural experimentation (Gates,
1991; Pearce, 1993). These papers include many examples
where the naive use of a multiple comparison test has
obscured the conclusions of an experiment. Common
criticisms are that the tests produce contradictory results
and lead to unclear conclusions. These authors all agree
that multiple comparison tests are inappropriate for
analysis of experiments with a factorial treatment structure,
and that interpretation of the patterns in the main
effects/interactions found to be significant is more
informative. In particular, where factors have an underlying
numeric structure, it is far better to examine the response
across increasing factor levels explicitly using polynomial
contrasts, for example, rather than via contiguous paired
comparisons. Where the authors disagree is in the analysis
of experiments with a completely unstructured set of
treatments, for example Pearce (1993) suggests that
multiple comparison tests may then sometimes be useful to
select an overall “best treatment”. However, Perry (1986)
strongly argues that, even in this case, multiple comparison
tests are less useful than consideration of the structure of
the whole set of treatment effects by graphical methods in
order to identify groups of similar treatments.

Reporting statistical results in scientific
papers
In the same way that the methods section of a scientific
paper should allow a fellow scientist to repeat the
experiment, the description of the statistical analysis should
enable the reader to understand the statistical methods used
sufficiently to repeat the analysis. The treatment structure
and the experimental design should be stated clearly, as
these determine the structure of the analysis. It is also useful
to reference the statistical package used. The method of
analysis and any diagnostic checks used to verify the
assumptions of the analysis should be clearly stated.
Significant terms in the treatment model (main effects and
interactions) with the corresponding F-statistics and
probability levels (e.g. F1,20 = 135.50, p<0.001) should be
listed unless the full ANOVA table can be shown. Tables or
graphs of appropriate treatment means (i.e. those relating
to the simplest model), with SEDs, LSDs or CIs (and the
residual degrees of freedom on which they are based), can
be used to show the pattern of response to different
treatment factors.
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